A NUMERICAL ANALYSIS OF GALLAGER’S CONTENTION RESOLUTION ALGORITHM

Gallager proposed a contention resolution protocal of multiaccess network in 1978 [I]. The algorithm can be
written as follow:

Algorithm 1 Gallager’s Algorithm

procedure CONFLICTRESOLUTIONPHASE(interval 7)
divide ¢ into two halves i1 and i
try sending all packets in i1
if hear silence then
mark i; as dealt
CONFLICTRESOLUTIONPHASE (i3)
else if hear success then
mark i; as dealt
try sending all packets in iy
if hear success then
break
else > it’s not possible to hear silence here
CONFLICTRESOLUTIONPHASE(i2)

else
CONFLICTRESOLUTIONPHASE(71 )

procedure GALLAGER
repeat

pick new enabled interval ¢ from undealt time axis

try sending all packets in 4

if hear silence or success then
mark ¢ as dealt

else if hear conflict then
CONFLICTRESOLUTIONPHASE(%)

until all packets are sent

With the assumption that new packets arrive as a Poisson point process, which implies that the number
of packets inside each interval obeys Poisson distribution, we analyze the performance of the algorothm by
measuring the throughput of the network, which is defined to be the expected number of packets delivered
per time unit. The throughput can be computed as the expectation of the number of packets delivered
divided by the time spent to deliver these packets.

Suppose the number of packets inside each initial enabled interval is a Poission random variable with ex-
pectation A. Our goal is to find the optimal A such that the throughput of the protocol is maximized. To
compute the throughput as a function of A, we define the following quantities:
e pl()\): suppose X,Y are independent Poisson random variables with expectation A/2,
PLO) EPrX =0 X +Y >2] = 2(1 = (14+A/2)e )/ (1= (1+A)e )
e p2(\): suppose X,Y are independent Poisson random variables with expectation /2,
P20 EPrX =1|X+Y >2] = (A/2)e M (1—e )/ (1= (1+N)e?)
e p3()\): suppose X, Y are independent Poisson random variables with expectation A/2,
p3(N) EPr[X 2| X +Y >2/=1-pl(}) - p2(\)
1



p4(A): suppose X is a Poisson random variables with expectation /2,
AN EPriX =1> X > 1] = (A/2)eM2/(1 — e /2

T(X): the expected time to resolve an enabled interval (the expected time between from entering
an enabled interval to finishing the conflict resolution phase), where the number of packets in the
interval is a random variable X ~ Poisson(A).

t(A): the expected time to resolve an enabled interval, where the number of packets in the interval
is a random variable X ~ Poisson(\) and is known to be at least 2.

N(A): the expected number of packets successfully delivered in one enabled interval, where the
number of packets in the interval is a random variable X ~ Poisson(\).

n(A): the expected number of packets successfully delivered in one enabled interval, where the
number of packets in the enabled interval is a random variable X ~ Poisson(\), and is known to be
at least 2.

These quantities satisfy the following relations:

TO) =1+ (1= (1+Ne?)-t(\) (1)

tA) =1+ pl(A) - £(A/2) +p3(A) - £(A/2) +p2(A) - (1 + (1 — pd(A)) - £ (A/2)) (2)
N =Xe™ + (1= (14+Ne ) -n(N) (3)

n(A) = pl(A) - n(A/2) + p3(A) - n (A/2) + p2(A) - (1 4+ p4(A) + (1 — p4(X)) - n(A/2)) (4)

We have the recursion in equation because: when it is known that at least 2 packets is in the inter-

val,

With p1(X) probability, we have 0 packets in the first half of the interval. We recurse the algorithm
on the second half of the interval.

With p3(\) probability, we have 2 packets in the first half of the interval. We release the second half
of the interval and recurse the algorithm on the first half.

With p2(X) probability, we have 1 packet in the first half of the interval. We send the packet in the
first half of the interval. With probability p4()), the second half of the interval only has one packet.
So with (1 — p4())) probability, we recurse the algorithm on the second half of the interval.

Similarly we obtain the recursive definition of (4).

)

By linearity of expectation, when the protocol runs for long enough, the throughput is equal to % We

computed the numerical value of the throughput with the following Mathematica code:

pillam_]
p2[lam_]
p3[lam_]
p4llam_]
t[lam_]
tt[lam_]
nllam_]
nn[lam_]
f[lam_]

:= Exp[-lam/2]*(1-(1+lam/2)Exp[-lam/2])/(1-(1+lam)Exp[-1lam]);

(lam/2) *Exp [-1am/2] * (1-Exp [-1lam/2])/(1-(1+lam)Exp[-lam]);

1-p1[lam]-p2[lam];

:= (lam/2*Exp[-lam/2])/(1-Exp[-lam/2]);

:= If[1am<0.00001, 0, 1+p2[lam]+(p1[lam]+p3[lam]+p2[lam] (1-p4[lam]))*t[lam/2]];

:= 1+(1-(1+lam)Exp[-lam] )t [lam];

:= If[1am<0.00001, 0, (pil[lam]+p3[lam]+p2[lam] (1-p4[lam]))*n[lam/2]+p2[lam]*(1+p4[lam])];
:= lam*Exp[-lam]+(1-(1+lam)Exp[-lam])*n[lam];

:= nn[lam]/tt[lam];

NMaximize [f [lam], lam]
{0.487116, {lam -> 1.26636}}

Note that in the code above, as the base case of the recursion, ¢t and n are considered 0 when A is below
some threshold (0.00001 is used in the code above).

The output of code above agrees with the result provided in Gallager’s original paper.

We further plot the expected throughput of different A around the optimal value, which is shown in Figure



FIGURE 1. Performance of Gallager’s Algorithm under Different A

REFERENCES

[1] R. G. Gallager, Conflict resolution in random access broadcast networks, Proc. AFOSR Workshop Commun. Theory Appl.
(Provincetown, MA), 1978, pp. 74-76.



